Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Расчитать компенсирующую способность п образ компенсатора». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.
Для компенсации тепловых расширений наибольшее распространение в тепловых сетях и на электростанциях находят П-образные компенсаторы.
Графическим методом зная тепловое удлинение, диаметр трубы определяем по номограмме длину плеча П-образного компенсатора, которая равняется 2,4 м.
По условиям предупреждения коррозии металла температура воды на входе в котел при работе на газовом топливе должна быть не ниже 60 °С во избежание конденсации водяных паров, содержащихся в уходящих газах. Так как температура обратной воды почти всегда ниже этого значения, то в котельных со стальными котлами часть горячей воды подается в обратную линию рециркуляционным насосом.
Содержание:
Требования к монтажу и себестоимость установки П-образных устройств
Тут стоит отметить, что некоторые из трубопроводов необходимо периодически разбирать для очистки. Для таких случаев компенсаторы этого типа изготавливаются с присоединительными концами на фланцах.
Так как компенсатор П-образного типа является наиболее простой конструкцией, он имеет ряд определенных недостатков. К ним можно отнести большой расход труб для создания элемента, большие габариты, необходимость в монтаже дополнительных опор, а также наличие сварных соединений.
При расчете используется наименьший из коэффициентов прочности, определенных по различным направлениям.
Для теплообменных аппаратов турбоустановок применяются выпуклые полусферические, торосферические или эллиптические днища. Тип и основные размеры днищ выбираются в соответствии с ГОСТ 6533―78. Расчетные схемы таких днищ приводятся на рис. 8.3. Изделия должны устанавливаться на прямолинейных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только одно изделие.
При расчете опор следует учитывать глубину промерзания или оттаивания грунта, деформации грунта (пучение и просадка), а также возможные изменения свойств грунта (в пределах восприятия нагрузок) в зависимости от времени года, температурного режима, осушения или обводнения участков, прилегающих к трассе, и других условий. 8.43.
Если не ограничивать поперечные перемещения трубопровода по всей длине от неподвижной до неподвижной опоры возникает опасность схода с опор участков трубопровода, ближайших к компенсатору.
Изделия не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий, для них не требуется сооружения специальных камер, а при наземной прокладке – площадок для обслуживания.
Действие и параметры этих элементов примерно одинаковые, а вот стоимость монтажа у П-образного примерно в два раза больше. Основная причина такого расхода денежных средств в том, что необходимо множество материалов для постройки, а также монтаж дополнительных опор.
Для компенсации удлинения труб применяют специальные устройства— компенсаторы, а также используют гибкость труб на поворотах трассы тепловых сетей (естественную компенсацию).
Допускаемое напряжение (160 МПа для компенсаторов из сталей 10Г 2С, Ст 3сп; 120 МПа для сталей 10, 20, Ст 2сп).
Основными достоинствами сальниковых компенсаторов являются малые габариты (компактность) и низкие гидравлические сопротивления, вследствие чего они нашли широкое применение в тепловых сетях, Особенно при подземной прокладке.
Принцип действия П-образного компенсатора
На бесканальных подземных тепловых сетях размещение изделия должно осуществляться в середине участка трубопровода, ограниченного неподвижными опорами.
Конструирование систем внутренних трубопроводов рекомендуется производить в следующей последовательности: на схеме трубопроводов предварительно намечают места расположения неподвижных опор с учетом компенсации температурных изменений длины труб элементами трубопровода (отводоами и пр.). Проверяют расчетом компенсирующую способность элементов трубопровода между неподвижными опорами.
Ниже проведен подробный анализ процедуры расчета П-образного компенсатора по двум основным источникам , , целью которого являлось выявление возможных опечаток и неточностей, а так же сравнение результатов.
В тех случаях, когда температурные измения длины участка трубопровода превышают компенсирующую способность его элементов, на нем необходимо устновить дополнительный компенсатор.
Анализируя полученные результаты, можно сделать вывод, что процедура определения коэффициента гибкости по РД 10-400-01 дает более «строгий» результат (меньшую гибкость отвода), при этом дополнительно учитывает избыточное давление в трубопроводе и модуль упругости материала.
Для гибких компенсаторов применяются крутоизогнутые отводы с радиусом гиба, равным диаметру трубы, а также нормально изогнутые отводы с радиусом гиба не менее трёх диаметров трубы.
Если диаметр отверстия больше предельного диаметра, то отверстие должно быть укреплено. Расчет укрепления производится по принципу компенсации изъятого отверстием металла.
Если отверстия имеют разный диаметр, то при расчете коэффициента прочности в формулах (8.17)―(8.18) принимается среднеарифметический диаметр.
П-образные компенсаторы применяются при всех способах прокладки. К преимуществам этих компенсаторов следует отнести небольшие усилия, передаваемые на неподвижные опоры, и большую компенсирующую способность. К недостаткам — большие габариты и увеличенное гидравлическое сопротивление. Кроме того, увеличивается металлоёмкость и трудоёмкость строительства.
Остальные участки не рассчитываем в виду их небольшой протяженности и естественных изгибов мазутопровода, выполняющих роль компенсаторов.
Радиальная компенсация может быть использована при любой конфигурации трубопровода. Радиальная компенсация широко применяется на теплопроводах, прокладываемых на территориях промышленные предприятий, а при небольших диаметрах теплопроводов (до 200 мм) ― также и в городских тепловых сетях.
C. Радиус гнутья гладких отводов 1000 мм, толщина стенки трубы 8 мм, длина спинки компенсатора В, м, вылет компенсатора Н, м.
Осевая компенсация скользящего типа создается сальниковыми компенсаторами. К настоящему времени устаревшие чугунные литые конструкции на фланцевых соединениях повсеместно вытеснены легкой, прочной и простой в изготовлении стальной сварной конструкцией, показанной на рисунке 5.2.
В тепловых сетях находят применение осевые компенсаторы двух типов: сальниковые и линзовые. В сальниковых компенсаторах (рис. 6.11) температурные деформации труб приводят к перемещению стакана 1 внутри корпуса 5, между которыми для герметизации помещается сальниковая набивка 3. Зажимается набивка между упорным кольцом 4 и грундбуксой 2 при помощи болтов 6.
Линзовые компенсаторы имеют относительно небольшую компен сирующую способность и большую осевую реакцию. В связи с этим для компенсации температурных деформаций трубопроводов тепло вых сетей устанавливают большое число волн или производят пред варительную их растяжку.
Рассчитать п образный компенсатор. П-образный компенсатор
Не совсем понятно происхождение первого уравнения в (20). Тем более, что по размерности оно не является корректным.
Несмотря на относительную простоту устройства, не всегда монтаж П-образного компенсатора оказывается ниже по себестоимости, по сравнению, например, со стоимостью сильфонного компенсатора. Сейчас речь идет о трубопроводах большого диаметра.
Выбор типа трубы производится с учетом условий работы трубопровода: давления, температуры, необходимого срока службы и агрессивности транспортируемой жидкости. При транспортировке агрессивных жидкостей следует применять коэффициенты условия работы трубопровода согласно табл.
Многие ресурсы, которые относят к возобновляемым, на самом деле не восстанавливаются и когда-нибудь будут исчерпаны. В качестве примера можно привести солнечную энергию. С другой стороны, при достаточном развитии технологии , многие ресурсы, которые традиционно считаются невозобновляемыми, могут быть восстановлены. Например, металлы можно использовать повторно.
Расчёт п-образных компенсаторов
Компенсация линейных удлинений труб из PPRC может обеспечиваться также предварительным прогибом труб при прокладке их в виде «змейки» на сплошной опоре, ширина которой допускает возможность изменения формы прогиба трубопровода при изменении температуры.
Хотелось бы добавить в копилку положительных свойств такое качество, как отсутствие контроля во время эксплуатации. Но в условиях густонаселенного пункта не всегда находится свободное пространство для обустройства трубопровода с П-образным компенсатором. Колено может монтироваться только на горизонтальных участках, в то время как сильфонный компенсатор устанавливается на любом прямолинейном участке.
Перед монтажом изделия должны быть проверены на соответствие их технических характеристик проекту тепловой сети, а также на отсутствие механических повреждений.
Целесообразно применять данный тип компенсаторов при монтаже трубопроводов небольших диаметров. Здесь необходимо отметить, что диапазон размеров сильфонных компенсаторов несколько шире. П-образное колено отлично справляется с вибрациями, однако для его изготовления требуется большое количество материала, что существенно повышает стоимость устройства.
Расчет компенсатора тепловой сети программа. Расчет п-образных компенсаторов
Сразу стоит отметить, что П-образный тип деталей — это наиболее простой вариант, который помогает решить проблему компенсации. Эта категория устройств имеет наиболее широкий диапазон применения по температурным показателям, а также по показателям давления.
По [3, прил.3] для покровного слоя принимаем материал не основе природных полимеров – стеклорубероид по ГОСТ 15879-70.
По своему устройству П-образный компенсатор считается самым простым, так как он состоит из минимального набора элементов. Именно такой минимализм позволил обеспечить широкий диапазон технических характеристик (температуры, давления). Изготавливается компенсатор одним из двух способов.
- Цельная труба гнется в нужных местах с определенным радиусом изгиба, образуя П-образную конструкцию.
- В состав компенсатора входят 7 элементов, среди которых три прямолинейных отвода и 4 поворотных уголка, которые свариваются в единую конструкцию.
Достоинством гибких компенсаторов является то, что они не нуждаются в обслуживании и для их укладки в нишах не требуется сооружение камер. Кроме того, гибкие компенсаторы передают на неподвижные опоры только реакции распоров.